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Abstract

Understanding the proximate and ultimate causes of phenotypic variation is fundamental in evolutionary research, as such 
variation provides the substrate for selection to act upon. Although trait variation can arise due to selection, the importance of 
neutral processes is sometimes understudied. We presented the first reference-quality genome of the Red Diamond 
Rattlesnake (Crotalus ruber) and used range-wide ‘omic data to estimate the degree to which neutral and adaptive evolution-
ary processes shaped venom evolution. We characterized population structure and found substantial genetic differentiation 
across two populations, each with distinct demographic histories. We identified significant differentiation in venom expres-
sion across age classes with substantially reduced but discernible differentiation across populations. We then used condition-
al redundancy analysis to test whether venom expression variation was best predicted by neutral divergence patterns or 
geographically variable (a)biotic factors. Snake size was the most significant predictor of venom variation, with environment, 
prey availability, and neutral sequence variation also identified as significant factors, though to a lesser degree. By directly 
including neutrality in the model, our results confidently highlight the predominant, yet not singular, role of life history in 
shaping venom evolution.
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Introduction
Natural populations often exhibit exceptional degrees of 
phenotypic variation (Darwin 1859; Nevo 1978), such as 
body color of strawberry poison frogs (Summers et al. 
2003; Yang et al. 2019), body and beak size of 
Galápagos Island finches (Darwin 1859; Grant and Grant 
2002), and levels of salinity resistance in salt marsh plants 
(Hester et al. 2001) among others (Hoekstra et al. 2006; 
Dickson et al. 2017). Such variation can be the product of 
adaptive and/or neutral evolutionary processes (Lande 
1976). Neutrality often serves as the evolutionary null hy-
pothesis (Fisher 1930; Kimura 1968; Ohta 1973; Nei 
2005; Müller et al. 2022), as it provides a baseline against 
which the effects of natural selection can be measured 
(Serra et al. 2013; Rohlfs et al. 2014; Zhang 2018). 
Phenotypic variation, however, is frequently explored solely 
within the framework of selection and adaptation (Gould 
and Lewontin 1979; Brodie et al. 2002; Williams et al. 
2003; Hanifin et al. 2008; Smith et al. 2023), even when 
such variation may be the product of neutral evolutionary 
processes via geographically limited dispersal and conse-
quent gene flow (Lande 1976; Alexander et al. 2006). 
Indeed, a textbook example of phenotypic variation as-
sumed to be adaptive is toxin production in rough-skinned 
newts (Taricha granulosa). Newt toxin production may be a 
response to coevolutionary interactions with a toxin-resistant 
predator, the common garter snake (Thamnophis sirtalis; 
Brodie and Brodie 1990; Brodie et al. 2002, 2005; Williams 
et al. 2003, 2010). Recently, a robust statistical framework 
accounting for demographic histories and population struc-
ture demonstrated that T. granulosa toxicity levels were 
more significantly predicted by population structure and 
isolation-by-distance (IBD) rather than resistance levels of 
T. sirtalis (Hague et al. 2020), indicating that neutral evolu-
tionary processes were substantially contributing to variation 
in toxin production. The relationship between population 
structure and toxin production in T. granulosa highlights 
the importance of determining whether other traits 
assumed to be evolving under strong selection actually ex-
hibit patterns consistent with only adaptive evolution 
(Zhang 2018).

Recently, snake venom has emerged as an effective sys-
tem for studying adaptive evolution (Margres et al. 2017a; 
Arbuckle 2020; Mason et al. 2022; Rao et al. 2022). 
However, neutral evolution in this system is occasionally un-
tested (Sanz et al. 2006; Barlow et al. 2009; Cipriani et al. 
2017; Smiley-Walters et al. 2017; Davies and Arbuckle 
2019; Smith et al. 2023) despite evidence that neutral pro-
cesses, such as genetic drift, may play a role in shaping ve-
nom characteristics (Sasa 1999; Aird et al. 2017; Casewell 
et al. 2020; Rao et al. 2022). Snake venom is a complex, 
polygenic trait composed of 40–100 proteinaceous toxins 
used for prey immobilization, digestion, and defense 
(Daltry et al. 1996; Barlow et al. 2009; Casewell et al. 
2011; Mackessy 2021). Despite the complex genomic archi-
tecture of venom (Schield et al. 2019; Margres et al. 2021a; 
Hogan et al. 2024), toxin gene expression is specific to ve-
nom glands (Rokyta et al. 2015), with differences in expres-
sion having clear, functional effects on the venom 
phenotype (Barlow et al. 2009; Holding et al. 2016; 
Margres et al. 2017a; Smiley-Walters et al. 2017; 
Casewell et al. 2020). Venom expression exhibits extensive 
variation across different species (Casewell et al. 2014; 
Margres et al. 2015a; Jackson and Fry 2016; Jackson 
et al. 2016; Durban et al. 2017; Pla et al. 2019; Senji 
Laxme et al. 2019; Holding et al. 2021), populations of 
the same species (Massey et al. 2012; Margres et al. 
2015a, 2019; Holding et al. 2018; Smith et al. 2023), and 
life histories (Andrade and Abe 1999; Alape-Girón et al. 
2008; Barlow et al. 2009; Margres et al. 2015a, 2015b; 
Wray et al. 2015; Modahl et al. 2016; Cipriani et al. 
2017; Durban et al. 2017; Rokyta et al. 2017; Borja et al. 
2018; Schonour et al. 2020); venom expression variation 
at all three scales has also been shown to be the result of 
genetic rather than environmental (i.e. plastic) effects 
(Gibbs et al. 2009; Margres et al. 2015b). Abiotic and/or bi-
otic selective pressures, such as differences in environment 
(Strickland et al. 2018; Margres et al. 2021b; Siqueira-Silva 
et al. 2021), diet (Mackessy et al. 2003; Holding et al. 2018; 
Schonour et al. 2020; Holding et al. 2021), or prey venom 
resistance (Barlow et al. 2009; Holding et al. 2016; 
Margres et al. 2017a), may produce such variation. 

Significance
Although the neutral theory of molecular evolution has provided a null model for >50 years when examining the gen-
etics underlying phenotypes, neutral processes are not always explicitly incorporated into trait-based analyses. Snake 
venoms evolve quite rapidly and are often assumed to be evolving solely under strong directional selection. Here, we 
present the first reference-quality genome of the Red Diamond Rattlesnake and use range-wide ‘omic data to estimate 
the degree to which neutral and adaptive evolutionary processes shape venom evolution. We found that life-history evo-
lution was the dominant force underlying venom variation. Following life history, however, neutral sequence variation 
explained comparable variation to both biotic and abiotic factors, suggesting that neutral processes play a more prom-
inent role than previously thought.
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Antagonistic coevolutionary interactions with prey have 
been associated with venom expression variation in certain 
cases (Barlow et al. 2009; Holding et al. 2016; Margres et al. 
2017a); however, prey-driven selection is often assumed to 
produce venom expression variation without sufficient em-
pirical evidence (e.g. Smith et al. 2023). Determining 
whether venom expression variation is adaptive requires 
both precise knowledge of diet and quantitative and func-
tional measurements of venom effectiveness in multiple 
prey species and populations, making it exceptionally diffi-
cult to test (Barlow et al. 2009; Holding et al. 2016; Margres 
et al. 2017a; Smiley-Walters et al. 2017; Casewell et al. 
2020). Consequently, venom studies often rely on methods 
for detecting signatures of selection such as dN/dS ratios 
(Juárez et al. 2008; Margres et al. 2013; Rokyta et al. 
2013; Mason et al. 2020; Zhao et al. 2021), but changes 
to gene-expression patterns have, in general, been found 
to explain a disproportionate amount of venom expression 
variation (Margres et al. 2016a, 2017a, 2017b), consistent 
with other traits (Gompel et al. 2005; Fraser 2013; Konczal 
et al. 2015). Nevertheless, venom expression variation 
should not be exclusively attributed to adaptive evolution 
without investigating the potential role of neutral evolu-
tionary processes (Sasa 1999; Casewell et al. 2020; Rao 
et al. 2022). Much like the variable toxin production ob-
served across T. granulosa populations, geographic vari-
ation in snake venom expression may be erroneously 
attributed solely to selection, whereas it may arise, at least 
in part, from neutral evolutionary processes.

The Red Diamond Rattlesnake (Crotalus ruber) exhibits 
ontogenetic and geographic venom variation (Straight 
et al. 1992), making it an excellent focal species for investi-
gating the contributions of neutral and adaptive processes 
on snake venom evolution. Crotalus ruber is a large-bodied 
pitviper found in western North America ranging from San 
Bernadino County, California, USA, south throughout the 
Baja California peninsula and various islands. Habitat 
throughout its range varies extensively (Grismer 2002), and 
its prey composition, which includes primarily small- to 
medium-sized mammals, is well characterized (Dugan and 
Hayes 2012). Two mainland subspecies are recognized: 
C. r. ruber extends from the northern range edge to the cen-
tral region of the Baja peninsula, and C. r. lucasensis inhabits 
the southern third of the Baja peninsula (Fig. 1). The current 
subspecies definitions are based on morphological (Grismer 
2002) and genetic differentiation, with divergence occurring 
∼570 ka before present (Harrington et al. 2018). Although 
C. ruber exhibits venom variation in specific protein families 
across its geographic range and life history (Straight et al. 
1992; Pozas-Ocampo et al. 2020), variation across the com-
plete venom phenotype as well as the evolutionary processes 
producing such variation have yet to be investigated.

In this study, we investigated the evolutionary processes, 
both adaptive and nonadaptive, that may have produced 

variation in a trait that is often assumed to be evolving un-
der strong directional selection. We aimed to 1) generate 
the first reference C. ruber genome for use in downstream 
analyses, 2) characterize neutral population structure and 
demographic history, 3) quantify venom expression vari-
ation across populations and life-history stages, and 4) de-
termine the relative contributions of neutral evolutionary 
processes, geographically variable abiotic and/or biotic fac-
tors, and life history in explaining venom expression evolu-
tion through robust statistical models. If venom is rapidly 
evolving due to selection, we expect decoupling of patterns 
produced by neutral evolutionary processes, such as popu-
lation structure and IBD (Wright 1943; Williams et al. 1988; 
Keller et al. 2009), with venom variation spatially, as de-
monstrated previously (Margres et al. 2019). Specifically, 
we would expect patterns of venom variation to correlate 
with patterns of variation in abiotic and/or biotic factors 
such as dietary composition or climate (Holding et al. 
2018). Conversely, if venom is evolving due to neutral pro-
cesses, we expect a strong correlation between neutral se-
quence variation and venom variation, similar to what was 
found for toxin-production levels in newts (Hague et al. 
2020). Overall, our approach integrating diverse data types 
from multiple individuals across the range will allow us to 
identify the most significant factors driving venom evolu-
tion within a species.

Materials and Methods

Sampling

We collected 21 C. ruber across the Baja California 
Peninsula, MX and southern California, USA (Fig. 1). 
Snakes were captured via road cruising or visual encounter 
surveys. Upon capture, sampling locality, snout–vent– 
length (SVL), tail length, and sex were recorded. Venom 
and blood were sampled in the field from two individuals 
prior to release. Nineteen individuals were euthanized, 
dissected, vouchered, and deposited at La Colección 
Herpetologica de la Facultad de Ciencias Biologicas de la 
Universidad Juárez del Estado de Durango in Gómez 
Palacio, Durango, MX. For dissection, we removed the right 
and left venom glands, heart, liver, gonad, kidney, muscle, 
and/or blood and stored each tissue in RNALater and/or 
95% ethanol. Snakes were collected under the following 
permits: Secretaría de Medio Ambiente y Recursos 
Naturales Oficio N SGPA/DGVS/01090/17; SGPA/DGVS/ 
002288/18; SGPA/DGVS/13338/19; SGPA/DGVS/2190/ 
19; SGPA/DGVS/08831/20; SGPA/DGVS/10362/21 and 
California Department of Fish and Wildlife SC-12985. The 
procedures outlined were approved by the University of 
South Florida Institutional Animal Care and Use Committee 
(IACUC) under protocol IS00011949 and Clemson 
University IACUC protocol 2017-067.
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Reference Genome Sequencing and Assembly

A high-quality reference genome for C. ruber was pro-
duced from a subadult male (66.5 cm SVL, 71.0 cm TL) 
sampled near Bahía de los Ángeles, Baja California, MX 
(Fig. 1). High-molecular-weight (HMW) genomic DNA 
(gDNA) was obtained from blood extracted from the caudal 
vein. The genome was sequenced using Pacific Biosciences 
HiFi sequencing on 1.5 cells on the Sequel II sequencer at 
the University of Delaware Sequencing & Genotyping 
Center. We used HiFiAdapterFilt (Sim et al. 2022) to detect 
adapter contamination in the sequenced reads and found 
1,259 reads (0.00094% of total) with adapters. We as-
sembled the genome using all reads with the Hifiasm as-
sembler (Cheng et al. 2021). We then used Blast (Johnson 
et al. 2008) with the UniVec database to detect adapters 
within the assembly and masked all adapter contaminants 
using the BEDTools maskfasta function (Dale et al. 2011). 
Assembly quality statistics were calculated using 
MERQURY (Rhie et al. 2020) and Genome Tools (Gremme 
et al. 2013). Assembly completeness was assessed using 
BUSCO (Simão et al. 2015) for datasets Vertebrata and 
Sauropsida. We screened for foreign contamination of 

the assembled genome using NCBI FCS-GX (Astashyn 
et al. 2024; Bush et al. 2024; Pozo et al. 2024). No contam-
ination was detected in the genome assembly and classifi-
cation of all contigs was consistent with the expected 
taxonomic composition of the target organism. To achieve 
a chromosomal representation of the assembly, we aligned 
the C. ruber genome to the Crotalus adamanteus genome 
(Hogan et al. 2024) using Ragtag (Alonge et al. 2022). A 
Circos plot of the genome was generated using the 
Circlize package (Gu et al. 2014) in R. Genome assembly 
and all data generated in this study are available at NCBI 
PRJNA1051499.

Reference Genome Annotation

To aid in genome annotation, we generated transcriptomes 
for blood, gonad, heart, kidney, liver, and right and left ve-
nom glands from the same subadult male used for refer-
ence genome assembly (see below for details on RNA 
extraction and sequencing); all RNA-seq data were aligned 
to the genome using Hisat2 (Kim et al. 2019). The genome 
was then annotated using GeMoMa (Keilwagen et al. 
2019) with the Crotalus adamanteus (Hogan et al. 2024) 

Fig. 1. Distribution and sampling map of Crotalus r. ruber (red map shading) and C. r. lucasensis (blue map shading). Color of sampling point is based on the 
types of data generated for the individual sampled at that location. Ref Genome, PacBio HiFi genome sequencing; WG, short-read whole-genome sequencing; 
VG, venom-gland transcriptomes; ddRADseq, double digest restriction-site associated DNA Sequencing. Snake image credits: Ricardo Ramírez Chaparro.
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genome and the aligned C. ruber transcriptome data as 
references. Functional annotations were added using 
InterProScan (Jones et al. 2014) and Blast (Johnson et al. 
2008). Due to the complex architecture of venom genes 
in large-tandem arrays, automated annotation of venom 
genes is often unreliable. As such, we used Geneious 
Prime (Kearse et al. 2012) and FGENESH+ (Salamov and 
Solovyev 2000) to manually identify and annotate venom 
genes as previously described (Margres et al. 2021a).

ddRADseq Data Processing

We downloaded double digest restriction-site associated 
DNA (ddRADseq) data for 34 C. ruber from NCBI 
SRA (Fig. 1; PRJNA413434; Harrington et al. 2018). 
Nonreference based population genomic analyses can be 
prone to errors arising from repetitive regions, polymorph-
isms, and sequencing errors (Brandies et al. 2019); there-
fore, we reanalyzed the C. ruber ddRADseq data using 
reference-based alignment to the generated reference gen-
ome described above. All ddRADseq data were aligned to 
the reference genome using iPγRAD (Eaton and Overcast 
2020) using default parameters.

Whole-Genome Sequencing Data Generation and 
Processing

We generated short-read whole-genome sequencing 
(WGS) data for six C. ruber (PRJNA1051499) and down-
loaded an additional C. ruber whole-genome from NCBI 
SRA (PRJNA593834; Schield et al. 2022). For the six gen-
omes generated in this study, DNA was isolated from blood 
samples using the EZNA Tissue DNA Kit (Omega Bio-tek), 
and DNA libraries were generated using the Ultra II FS 
DNA Library Prep kit (New England Biolabs). Libraries 
were sequenced at the North Carolina State University 
Genomic Sciences Laboratory using Illumina Novaseq 
6,000 with 150 paired-end sequencing (supplementary 
table S6, Supplementary Material online). Data were 
mapped to the reference genome using bowtie2 
(Langmead and Salzberg 2012), and SNPs were called using 
GATK (McKenna et al. 2010) best practices workflow for 
germline short variant discovery with default parameters 
and recommended hard filters. A merged VCF file with 
the 34 ddRADseq samples and seven WGS samples was 
produced using bcftools merge and was subsequently fil-
tered using VCFtools (Danecek et al. 2011) with the follow-
ing parameters: minimum allele frequency (maf) 0.05, 
minimum depth (minDP) 5, and max-missing 0.5. The final 
combined genomic dataset included 41 individuals and 
5,284 SNPs.

Transcriptome Sequencing

We sequenced venom-gland transcriptomes from 12 
individuals and additional blood, gonad, heart, kidney, 

and liver transcriptomes for the reference genome animal 
(PRJNA1051499) as outlined above. We also downloaded 
six additional venom-gland transcriptomes from NCBI SRA 
(PRJNA88989; Holding et al. 2021). Venom glands were 
processed following the approach of Rokyta et al. (2012). 
Briefly, for venom glands, venom was extracted four days 
prior to euthanasia to allow maximum transcription upon 
venom gland extraction (Rotenberg et al. 1971). At four 
days, snakes were euthanized and dissected. For dissection, 
the left and right venom glands, heart, blood, muscle, kid-
ney, liver, and gonad were removed and placed in 
RNALater. We extracted RNA from the left and right venom 
glands separately, then combined in equal quantities for 
RNA library prep for each snake. For the reference genome 
snake, we also extracted RNA from each of the tissues listed 
above. We isolated RNA using a TRIzol extraction method 
as outlined in Rokyta et al. (2017). RNA libraries were gen-
erated using the Ultra II RNA Library Prep Kit for Illumina 
(New England Biolabs) and sequenced at the Florida 
State University DNA Sequencing Facility using NovaSeq 
6,000 and the Oklahoma Medical Research Foundation 
Clinical Genomics Center using the NovaSeq X Plus with 
150 paired-end sequencing (supplementary table S6, 
Supplementary Material online). Because gene expression 
values are sensitive to the read count methods employed, 
particularly for genes with exceptionally low and high ex-
pression (Liu et al. 2022), we mapped each transcriptome 
to the generated reference genome using Hisat2 (Kim 
et al. 2019) and estimated read counts for genes using 
both HTSeq-count (Anders et al. 2015; Putri et al. 2022) 
and Stringtie2 (Pertea et al. 2015). We used these two read- 
count estimation methods to provide complementary yet 
distinct quantitative estimates of gene expression to ac-
count for potential biases inherent in each approach. 
StringTie2 assembles RNA transcripts and estimates 
gene expression based on these assembled transcripts. 
HTSeq-counts directly counts the number of reads mapped 
to predefined features (e.g. genes labeled in a GFF3 anno-
tation file), providing a direct measure of gene expression 
but potentially overlooking transcript complexity, such as 
alternative splicing or multiple isoforms, which may be bet-
ter accounted for by StringTie2.

Estimating Population Structure and Neutral Genetic 
Divergence

To recharacterize C. ruber population structure (Harrington 
et al. 2018), we used conStruct (Bradburd et al. 2018) on 
the combined genomic dataset (n = 41) described above. 
We removed SNPs with >30% missing data and subse-
quently removed two individuals with >50% missing data 
for a reduced dataset containing 39 individuals and 2,241 
SNPs. We initially tested K = 1--5 genetic clusters using 
both spatial and nonspatial models and compared 
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predictive accuracies using cross-validation. For each value 
of K and each type of model, we ran cross-validation using 
20 replicates and 10,000 iterations, with SNPs split into 
75% training and 25% testing data partitions. We ran 
each model for 20,000 iterations using three independent 
MCMC replicates. Additionally, we investigated patterns 
of sequence dissimilarity across all individuals and SNPS 
(n = 41; 5,284 SNPs) using principal coordinate analysis 
(PCoA) from the R package dartR (Gruber et al. 2018). 
We then calculated FST between the defined populations 
using VCFtools (Danecek et al. 2011) on both the full 
(n = 41; 5,284 SNPs) and reduced (n = 39; 2,241 SNPs) 
genomic dataset.

Estimating Effective Migration Surfaces

To infer migration rates in C. ruber, we used EEMS (Petkova 
et al. 2016) on the full combined genomic dataset (n = 41; 
5,284 SNPs). We converted the merged WGS and 
ddRADseq SNP dataset to PLINK format (Purcell et al. 
2007) and transformed the data to a pairwise distance ma-
trix using “bed2diffs” function in EEMS. We used EEMS to 
estimate migration surfaces by running three independent 
chains, each with 1,000 demes, 10,000,000 MCMC itera-
tions, 1,000,000 iterations of burn-in, and a thinning interval 
of 10,000. All chains successfully converged (supplementary 
fig. S5, Supplementary Material online).

Estimating Demographic History

To estimate effective population size (Ne) through time for 
each C. ruber population as identified in conStruct above, 
we used pairwise sequentially Markovian coalescence 
(PSMC; Li and Durbin 2011). We used PSMC over similar 
methods (e.g. MSMC, SMC++, Stairway Plot; Schiffels 
and Durbin 2014; Liu and Fu 2015; Terhorst et al. 2017) 
due to its higher precision and accuracy, especially during 
intermediate (∼10,000–666 generations) time periods 
(Patton et al. 2019); however, PSMC may imprecisely esti-
mate (Ne) towards the present (Liu and Fu 2015; 
Nadachowska-Brzyska et al. 2016; Patton et al. 2019). 
Therefore, interpretations of historical demographic history 
based on our analyses were limited to intermediate evolu-
tionary timescales as defined above. We inferred Ne across 
28 free atomic time intervals (4+25*2+4+6) and checked 
for variance in Ne estimation by performing 100 bootstrap 
replicates (supplementary fig. S6, Supplementary Material
online). We used the published generation time (g = 3.3) 
and mutation rate (μ = 0.7 x 10−8) of sister taxon Crotalus 
atrox (Castoe et al. 2007; Holding et al. 2021).

Venom Proteomics

To characterize C. ruber venom variation, we collected ve-
nom from 20 individuals and used reversed-phase high per-
formance liquid chromatography (RP-HPLC) to quantify 

venom protein expression. Venom was collected and then 
dried and stored at −80 ◦C prior to analysis. We conducted 
RP-HPLC on a Dionex ultimate 3000 UHPLC DAD (Thermo 
Fisher Scientific) and a BeckmanSystem Gold HPLC 
(BeckmanCoulter) using a Jupiter 5 μm C18 300 Å, LC 
Column 250 times 2 mm, Ea column. 50 μg of total venom 
protein were injected onto the column using a solvent 
system of A = 0.1% trifluoroacetic acid (TFA) in water and 
B = 0.075% TFA in acetonitrile. After five minutes at 5% 
B, a 1% per minute linear gradient of A and B was run to 
25% B, followed by a 0.25% per minute gradient from 
25% to 65% B at a flow rate of 0.6 mL per min (Margres 
et al. 2014). Column effluent was monitored at 220 nm. 
RP-HPLC peaks were quantified in the Chromeleon soft-
ware (Thermo Fisher Scientific). To estimate the relative 
abundance of each protein peak, we measured the area un-
der the peak relative to the total area of all peaks identified 
(Gibbs and Rossiter 2008). Prior to statistical analyses, 
quantified peaks were transformed in R using isometric 
Log-Ratio (ILR) from the rombCompositions package 
(Templ et al. 2023).

Characterizing Venom Expression Differentiation

To identify patterns of venom expression variation, we first 
conducted a PCA on the ILR transformed venom proteomic 
data (n = 20) in R using the “prcomp” function from the 
Stats package. We then conducted a simple regression 
model (“lm” function in R) comparing PC1 with SVL to 
test for the effects of ontogeny, which is common in rattle-
snakes (Andrade and Abe 1999; Alape-Girón et al. 2008; 
Barlow et al. 2009; Margres et al. 2015a, 2015b; Wray 
et al. 2015; Modahl et al. 2016; Cipriani et al. 2017; 
Durban et al. 2017; Rokyta et al. 2017; Borja et al. 2018; 
Schonour et al. 2020). To determine whether venom pro-
tein expression was significantly different across popula-
tions and/or age classes, we performed a permutational 
multivariate analysis of variance (PERMANOVA) in the 
“adonis2” function of the vegan package (Oksanen et al. 
2020) on the ILR transformed venom proteomic data. The 
same approach using PCA, simple regression, and 
PERMANOVA was repeated using normalized venom-gland 
transcriptomic data from HTSeq-count (n = 18; Anders 
et al. 2015; Putri et al. 2022) to verify concordance between 
venom proteomic and venom-gland transcriptomic data. 
Read count data from HTSeq-count were normalized using 
median of ratios from DEseq2 (Anders and Huber 2010).

We also tested whether specific toxin transcripts were 
significantly differentially expressed (DE) across populations 
and/or age classes using the program DESeq2 (Love et al. 
2014) on our venom-gland transcriptome data (n = 18). 
For the geographic comparison, we used the two popula-
tions as delineated from conStruct (Bradburd et al. 2018) 
and accounted for ontogeny in the model by using age class 
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as a covariate. For the ontogenetic comparison, we ac-
counted for geography in the model by including popula-
tion as a covariate. Significance in differential expression 
was calculated using the FDR-adjusted P value (Padj) and 
log2 fold change (LFC) ≥ 1 from DESeq2.

Determining the Contributions of Ecological and 
Evolutionary Factors on Venom Expression Variation 
through Conditional Redundancy Analysis

To estimate the contributions of neutral processes, life his-
tory (i.e. snake size), prey availability and diversity, and cli-
mactic conditions on C. ruber venom expression variation, 
we used conditional Redundancy Analyses (RDA; van den 
Wollenberg 1977; Liu 1997; Capblancq and Forester 
2021). Briefly, conditional RDA controls for the effects of 
one set of explanatory variables prior to conducting RDA 
on the residual matrix. RDA functions as an extension to 
multiple regression analysis but permits multivariate re-
sponse variables. Significance testing within an RDA frame-
work utilizes permutation, making it robust to small sample 
size and distributional assumptions (Liu 1997).

Here, we explored venom expression variation using 
eight different response variables: (i) estimated read counts 
for all toxin genes using HTSeq-counts (Anders et al. 2015; 
Putri et al. 2022), (ii) estimated read counts for all toxin 
genes using Stringtie2 (Pertea et al. 2015) and (iii–viii) esti-
mated read counts for specific paralogs belonging to the six 
dominant toxin families individually using HTSeq-counts. 
All venom response variables were multivariate toxin gene 
expression data representing the abundance levels of mul-
tiple toxin loci, enabling us to identify the most significant 
explanatory variables influencing the expression of toxin 
genes within a multivariate framework. Prior to analyses, 
we transformed read count data using the median of ratios 
in DESeq2 (Anders and Huber 2010). We conditioned each 
explanatory variable (nontoxin sequence variation, toxin se-
quence variation, climactic variation, prey availability, and 
prey diversity, each described below) in the model on the 
other explanatory variables to remove the potential con-
founding effects for each. We then conducted a marginal 
test using all explanatory variables and used forward model 
selection to generate the marginal model (i.e. best model). 
Conditional RDAs were conducted using the “rda” func-
tion from the Vegan package in R (Oksanen et al. 2020) 
and included the “anova” function for significance testing, 
“RsquareAdj” for model fit, and “ordiR2step” for forward 
model selection. We describe each explanatory variable 
below: 

1. To include the contributions of neutral processes in 
the model, we generated a SNP dataset for nontoxin 
genes, our proxy for neutrality (Rautsaw et al. 2019; 
Holding et al. 2021), sequenced from the venom-gland 

transcriptomes (n = 18). We used GATK (McKenna 
et al. 2010) with default parameters as previously out-
lined. Additional filtering parameters from VCFtools 
(Danecek et al. 2011) included min-alleles 2, minDP 5, 
max-missing 0.5, and minimum allele frequency of 
0.1. We converted our annotated reference genome 
file to a BED file and used VCFTools with functions 
“bed” and “exclude-bed” to isolate nontoxin genes 
from toxin genes, resulting in 41,236 nontoxin SNPS 
for analysis. We also attempted to remove potential sig-
natures of selection from the nontoxin SNP data by cre-
ating a second dataset containing only synonymous 
sites. Variant annotation was conducted using SnpEff 
(Cingolani et al. 2012), resulting in 3,818 nontoxin syn-
onymous SNPs. Nontoxin sequence variation was sum-
marized using principal Coordinate Analysis (PCoA) 
from the R package dartR (Gruber et al. 2018) on both 
the full nontoxin SNP dataset (41,236 SNPs) and the 
nontoxin synonymous SNP dataset (3,818 SNPs; 
supplementary fig. S2B-C, Supplementary Material
online). To determine whether the inclusion of other 
nontoxin SNP types (nonsynonmous and intronic) accur-
ately represented neutral genetic divergence, we con-
ducted a regression using PCo1 of the full nontoxin 
SNP dataset and PCo1 of the nontoxin synonymous 
SNP dataset (supplementary fig. S4, Supplementary 
Material online). We retained PCo1 and PCo2 of the 
full nontoxin SNP dataset (41,236 SNPs) for use in the con-
ditional RDAs (supplementary table S7, Supplementary 
Material online).

2. To include signatures of selection on toxin gene se-
quences, we summarized toxin sequence variation 
from venom-gland transcriptomes (n = 18) following 
the same approach above; however, following filtration, 
toxin genes were isolated from nontoxin genes, result-
ing in a toxin-only SNP dataset of 1,760 SNPs. Note 
that toxin sequence variation was excluded as a variable 
in individual toxin families due to the limited number of 
independent SNPs for each family (supplementary fig. 
S2D and table S7, Supplementary Material online).

3. Abiotic factors were incorporated using differing envir-
onmental conditions as represented by the 19 
Worldclim Bioclim variables (Hijmans et al. 2005) at 
each sampling site using 5 min spatial resolution. We 
conducted a PCA across the data, and PC1 and PC2 
were retained for use in the conditional RDAs (See 
supplementary table S4, Supplementary Material online 
for PC loadings and proportion of variance explained by 
each PC).

4. To account for potential differences in diet between in-
dividuals, we incorporated prey availability in the model 
following the approach of Holding et al. (2018). Prey 
availability was determined using published accounts 
of prey data for C. ruber (Klauber 1997; Clark et al. 
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2012; Dugan and Hayes 2012; Holding et al. 2021) re-
sulting in 29 known prey items (supplementary 
table S5, Supplementary Material online). Geographic 
range was determined for each prey item using 
iNaturalist (www.inaturalist.org), IUCN (www.iucn. 
org), and/or Map of Life (mol.org). For each sample 
site, each prey item was given a value of “1” if present 
and “0” if absent (supplementary table S7, 
Supplementary Material online). We conducted 
Nonmetric multidimensional scaling (NMDS) on the 
prey dataset using the “metaMDS” function from the 
Vegan package in R (Oksanen et al. 2020) and retained 
MDS1 and MDS2 for use in the conditional RDAs (See 
supplementary table S5, Supplementary Material online 
for NMDS loadings and proportion of variance explained 
by each MDS).

5. Phylogenetic diversity of prey has been shown to predict 
patterns of venom evolution across species (Holding 
et al. 2021); therefore, we incorporated estimates of 
prey mean phylogenetic distance (MPD) in the model. 
We generated a phylogeny of the 29 C. ruber prey items 
using www.timetree.org (supplementary fig. S7, 
Supplementary Material online; Kumar et al. 2017) 
and used the “ses.mpd” function from the Picante R 
package (Kembel et al. 2010) to calculate MPD at each 
site (supplementary table S8, Supplementary Material
online).

See supplementary table S7, Supplementary Material on-
line for data used in conditional RDAs.

Results

De Novo Genome Assembly and Annotation

We generated a reference C. ruber genome using PacBio 
HiFi reads (∼20× coverage) for a subadult male collected 
within the C. r. ruber range near Bahía de los Ángeles, 
Baja California, MX (Fig. 1). Genome assembly length was 
1.59 Gb (1,126 contigs, N50 of 6.25 Mb, L50 of 65; 
Table 1). We calculated additional genome quality assess-
ment metrics, such as phred quality score (55), k-mer com-
pleteness (96%), and BUSCO (96.5% complete Vertebrata; 
93.0% complete Sauropsida; Table 1). To achieve a 
chromosome-level assembly, we scaffolded the C. ruber as-
sembly to the chromosome-level assembly of the Eastern 
Diamondback Rattlesnake (C. adamanteus; Hogan et al. 
2024) using RagTag (Alonge et al. 2022). The number of 
contigs in the assembly was reduced ∼ 10× to 111 scaf-
folds (N50 of 206.58 Mb), and all 17 autosomes assembled 
for C. adamanteus were assembled for C. ruber. Because 
our genome individual was male, only the Z sex chromo-
some was assembled (Fig. 2a). We annotated the genome 
and identified 20,771 protein-coding genes including 94 
putative toxin genes within 14 toxin families (Fig. 2a). 
Multiple toxin families were found on microchromosomes 

(chromosomes 9–18 in Fig. 2a) as large tandem arrays, con-
sistent with toxin genomic organization in other rattle-
snakes (Schield et al. 2019; Margres et al. 2021a; Hogan 
et al. 2024).

Population Genomics Identifies Distinct Populations and 
Evolutionary Histories

We used conStruct (Bradburd et al. 2018) across 39 indivi-
duals (2,241 SNPs) to characterize population structure 
(Fig. 2b–c). Spatial models invariably had higher predictive 
accuracy than nonspatial models, with predictive accuracy 
reaching an asymptote at K = 2-3 genetic clusters 
(supplementary fig. S1, Supplementary Material online). 
For the spatial models, additional genetic clusters beyond 
K = 2 explained <5% of total genetic covariance, suggest-
ing that K = 2 was an appropriate choice for characterizing 
population genetic structure (Fig. 2b). After cross- 
validation, we fit final spatial models using the full dataset 
for K = 2 and K = 3. For K = 2, populations were spatially 
sorted by latitude (Fig. 2b), with contact at ∼ 26 ◦N latitude, 
relatively consistent with current C. ruber subspecies delin-
eation (Fig. 1; Grismer 2002). A similar pattern was ob-
served for K = 3 (Fig. 2c), with additional weak 
population structure at the northern range edge. We calcu-
lated the fixation index (FST ) between the populations for 
K = 2 in conStruct (hereinafter referred to as the north 
and south populations) using the full genomic dataset 
(north n = 19; south n = 22; 5,284 SNPs) as well as the re-
duced genomic dataset (north n = 18; south n = 21; 2,241 
SNPs) used specifically for conStruct. We found that FST = 
0.295 and 0.301, respectively. We also visualized patterns 
of sequence dissimilarity using the full genomic dataset 

Table 1 Genome assembly statistics for C. ruber

Metric

Assembly size (Gb) 1.59
Number of contigs 1, 126
Contig N50 (Mb) 6.25
Contig L50 65
Number of scaffolds 111
Scaffold N50 (Mb) 206.58
bp anchored to chromosomes (Gb) 1.57 (98.7%)
Phred quality score (Q) 55
k-mer completeness % 96
BUSCO Vertebrata (C — D — F — M) % 96.5  —  1.0  —  1.1  —  2.4
BUSCO Sauropsida (C — D — F — M) % 93.0  —  1.2  —  1.2  —  5.8
CG content, % 39.8
Repeat content, % 49.07
Protein-coding genes 20,771
Putative venom protein-coding genes 94

All metrics are for the de novo assembly except “Number of scaffolds”, 
“Scaffold N50”, and “bp anchored to chromosomes” which represent metrics 
for the RagTag assembly to C. adamanteus. BUSCO metrics are shown as 
complete (C), duplicated (D), fragmented (F), and missing (M). Genome assembly 
available at NCBI PRJNA1051499.
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(n = 41; 5,284 SNPs) using PCoA. Individuals clustered ac-
cording to the population structure identified in conStruct; 
southern individuals clustered tightly along both PCo1 and 

PCo2 while northern individuals clustered tightly along 
PCo1, but with increased variance along PCo2 
(supplementary fig. S2A, Supplementary Material online).

Fig. 2. Reference genome assembly and genomic sequencing of C. ruber reveals two genetically distinct populations with unique demographic histories. 
a) Circos plot of the RagTag reference genome assembly displaying gene density, repeat content, CG content, and toxin gene families mapped to chromo-
some scaffolds as represented by corresponding colored lines. Toxin families are (ordered by chromosome): KUN, Kunitz-type toxin; CRISP, cytesine-rich se-
cretory protein; NUC, nucleotidase; PDE, phosphodiesterase; VEGF, vascular endothelial growth factor; MYO, myotoxin; 3FTx, three-finger toxin; NGF, nerve 
growth factor; BPP, bradykinin-potentiating peptide; HYAL, hyaluronidase; CTL, C-type lectin; SVMP, snake venom metalloproteinase; SVSP, snake venom 
serine proteinase; PLA2, phospholipase A2. b–c) Population structure characterized from short-read WGS and ddRADseq data using ConStruct spatial models 
with b) K = 2 and c) K = 3. Maps depict individuals as pie charts reflecting ancestry proportions contributed by each genetic cluster. d) Estimated effective 
migration surface from WGS and ddRADseq data using EEMS. Shading indicates areas with relatively high (orange) and low (blue) landscape resistance to gene 
flow compared to a null area-wide model of isolation-by-distance (IBD). Plotted values of log(m) are effective migration rates relative to the overall migration 
rate across the study area. Circles represent sampling locations, and circle size corresponds to sampling density. e) Estimates of demographic histories across 
the two distinct populations from panel (b). Lines represent effective population size (Ne) estimated from eight individuals using a generation length of 3.3 
years and a mutation rate of 0.007 per lineage per million years. Colors indicate Ne estimates of individuals sampled from the northern population (warm) and 
southern population (cool; as determined in panel (b)). Contact zone (∼ 26 ◦N) is indicated throughout.
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Next, we estimated effective migration surfaces (EEMS; 
Petkova et al. 2016) using the full genomic dataset 
(n = 41; 5,284 SNPs) to explore spatially variable migration 
rates across the landscape and visualize departures from 
IBD (Fig. 2d). We observed three areas of relative reductions 
in gene flow: (i) the Peninsular Ranges of Southern 
California, (ii) the Vizcaíno Desert of the Baja Peninsula, 
and (iii) the current C. ruber subspecies boundary at 
∼ 26 ◦N latitude near the town of Loreto, BCS, MX (Fig. 2d).

Lastly, we estimated demographic histories for the north 
(n = 3) and south (n = 5) populations using the Pairwise 
Sequentially Markovian Coalescent model (PSMC; Fig. 2e; 
Li and Durbin 2011) on our whole-genome data. Effective 
population size (Ne) decreased in both populations be-
tween ∼100 and 200 ka before present and continued to 
decrease during the last glacial period (Broecker and 
Hemming 2001) between ∼50 and 100 ka for the northern 
population while stabilizing in the southern population 
(Fig. 2e).

Venom Expression Varies Extensively Across Life History 
and Less So Across Geographic Space

We conducted a PCA on the venom proteomic data for 20 
individuals (supplementary table S1, Supplementary 
Material online) and found that PC1 (65%) was primarily 
associated with SVL, with individuals clustering into two 
groups separated at ∼65 cm SVL (supplementary fig. S3, 
Supplementary Material online). Indeed, a linear regression 
showed that venom PC1 was significantly correlated with 
SVL (P < 0.001, adj-R2 = 0.82; supplementary fig. S3B, 
Supplementary Material online). To test for venom protein 
expression differentiation across age class (≤ 65 cm juven-
ile) and population (northern and southern populations as 
defined in conStruct), we conducted a PERMANOVA. 
Only ontogeny was significant (P < 0.001, R2 = 0.65; adult 
n = 14; juvenile n = 6); neither population (P = 0.194, 
R2 = 0.03; north n = 11; south n = 9) nor the interaction 
between age and population (P = 0.275, R2 = 0.02) were 
significant. Overall, our proteomic analyses revealed that, 
at the trait level, venom expression was significantly differ-
ent between age classes but not significantly different be-
tween populations.

To identify the specific toxin genes underlying ontogen-
etic venom variation and determine whether any individual 
toxin genes were significantly DE between populations, we 
generated venom-gland transcriptome data for 18 indivi-
duals across the range (Fig. 3). We first verified that the ve-
nom gland transcriptomic data exhibited similar patterns to 
those observed in the venom proteomic data by reconduct-
ing both PCA and PERMANOVA (Fig. 3a,b). PC1 (31%) was 
again significantly and positively correlated with SVL 
(P < 0.001, adj-R2 = 0.65; Fig. 3a), and only ontogeny 
was significant in the PERMANOVA (P = 0.005, R2 = 0.31; 

adult n = 13; juvenile n = 5); neither population 
(P = 0.200, R2 = 0.07; north n = 12; south n = 6) nor the 
interaction between age and population (P = 0.590, 
R2 = 0.02) were significant.

We identified specific genes that were significantly DE 
across populations (Fig. 3c) and age classes (Fig. 3d). 
Between populations (north n = 12; south n = 6), four toxin 
genes were significantly DE, with all four genes (C-type 
lectin [CTL]–1, CTL–2, snake venom metalloproteinase 
[SVMP]–mad–6, SVMP–mpo–1) exhibiting higher expres-
sion in the northern population. Between age classes (adult 
n = 13; juvenile n = 5), while accounting for population, 27 
toxin genes were significantly DE. The majority (n = 21) of 
the genes were biased toward adults (i.e. more highly ex-
pressed in adults than juveniles), with most genes belong-
ing to the SVMP (n = 9) and CTL (n = 6) toxin families. 
Most juvenile-biased toxin genes (n = 6) belonged to the 
myotoxin gene family (n = 3). See supplementary 
table S2, Supplementary Material online for details of all 
DE transcripts between age groups and populations.

Conditional Redundancy Analysis Identifies Life History 
as the Most Predominant Driver of Venom Evolution

To determine the relative roles of putatively neutral and 
adaptive evolutionary processes in driving venom expres-
sion evolution, we used conditional RDA to estimate the 
effects of nontoxin sequence variation (our proxy for 
neutrality; supplementary fig. S2A-C, S4, Supplementary 
Material online), toxin sequence variation, abiotic environ-
mental factors, and prey data (availability and phylogenetic 
distance) on multivariate venom expression data.

First, we used PCoA to determine whether (i) nontoxin 
SNPs accurately reflected patterns of neutral genomic se-
quence variation and (ii) patterns of nontoxin sequence 
variation were robust to the inclusion of nonsynonymous 
variants. Patterns of sequence variation under PCoA were 
consistent among neutral genomic SNPs, nontoxin synoyn-
mous SNPs, and nontoxin SNPs including all variant types 
(supplementary fig. S2, Supplementary Material online). 
Additionally, correlation between PCo1 of nontoxin syn-
onymous SNPs and PCo1 of all nontoxin SNPs was highly 
significant (supplementary fig. S4, Supplementary 
Material online; P < 0.001; R2 = 0.97). Therefore, nontoxin 
SNPs including all variant types served as a valid proxy for 
neutral patterns of genetic divergence.

Using conditional RDA with toxin gene read count esti-
mations from HTSEQ-count as the multivariate response 
variable, the full model, including all variables, was signifi-
cant (P = 0.002; adj-R2 = 0.73; Table 2), indicating that 
our model captured at least one or more variables that sig-
nificantly explained venom expression variation. The mar-
ginal (i.e. best) model (adj-R2 = 0.54) as determined from 
forward model selection revealed that SVL (P = 0.003; 
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adj-R2 = 0.30), prey availability (NMDS2; P = 0.010; 
adj-R2 = 0.14), and abiotic factors (Bioclim PC1; 
P = 0.012; adj-R2 = 0.10) were the most significant predic-
tors of venom expression variation (Table 2).

Similarly, using read count estimations from 
Stringtie2 as the multivariate response variable, the full 
model, including all variables, was again significant 
(P = 0.003; adj-R2 = 0.66; Table 3). The marginal model 

(adj-R2 = 0.62) as determined from forward model selec-
tion differed slightly from the best model using 
HTSeq-count data as input; here, SVL (P = 0.001; 
adj-R2 = 0.44), abiotic factors (Bioclim PC1; P = 0.001; 
adj-R2 = 0.12), and nontoxin sequence variation 
(Nontoxin PCo1; P = 0.020; adj-R2 = 0.06) were the most 
significant predictors of venom expression variation 
(Table 3).

Fig. 3. Differential venom expression across life history and geographic space in C. ruber. a) Principal Component Analysis of venom-gland transcriptome 
DESEQ2 normalized count data, and b) Regression of Principal Component 1 (PC1) with SVL. Dotted line at 65 cm SVL shows the cut-off used for age class 
designation. Proportion of variance accounted for in PC1 and PC2 was 31% and 13%, respectively. c–d) Volcano plots of differential expression calculated 
from DESeq2 between populations c) and age classes d). Vertical dotted lines represent LFC ≥ 1, and horizontal dotted line represents α ≤ 0.05. Green points in 
each plot denote significantly DE toxin transcripts, and their placement denotes group bias. SVL, snout–vent–length; BPP, bradykinin-potentiating peptide; 
CRISP, cytesine-rich secretory protein; CTL, C-type lectin; MYO, myotoxin; PLA2, phospholipase A2; SVMP, snake venom metalloproteinase; SVSP, snake ve-
nom serine proteinase.
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Life History Best Explains Expression Evolution Across 
Individual Toxin Gene Families

We determined whether expression variation of the six 
most abundantly expressed toxin families (bradykinin- 
potentiating peptide [BPP], C-type lectin [CTL], Myotoxin, 
phospholipase A2 [PLA2], snake venom metalloproteinase 
[SVMP], snake venom serine proteinase [SVSP]) were signifi-
cantly correlated with different explanatory variables. 
Variation across all toxin families, as identified in the mar-
ginal models, was significantly correlated with SVL 
(Table 4). Nontoxin sequence variation was also found to 
be a significant predictor of CTL, Myotoxin, and SVMP ex-
pression. Abiotic variation (Bioclim PC1) was the most sig-
nificant predictor of PLA2 expression variation. Prey was 
identified as a significant predictor of expression variation 
in BPP and SVSP toxin families, with prey availability 
(NMDS2) predicting BPP expression variation, and prey 
mean phylogenetic distance (MPD) predicting SVSP expres-
sion variation. See supplementary table S3, Supplementary 
Material online for detailed results of conditional RDAs for 
individual toxin families.

Discussion

Assembly and Annotation of Reference Quality C. ruber 
Genome

Genomic content of the reference genome assembly was 
similar to that of other snake assemblies (Vonk et al. 
2013; Yin et al. 2016; Schield et al. 2019; Suryamohan 

et al. 2020; Li et al. 2021; Margres et al. 2021a; Westeen 
et al. 2023; Hogan et al. 2024). Notably, the C. ruber gen-
ome assembly displayed improved contiguity compared to 
several prior Crotalus assemblies, exhibiting a higher contig 
N50 and fewer total contigs compared to C. tigris (Margres 
et al. 2021a) and C. viridis (Schield et al. 2019). Overall, the 
accurate and contiguous reference-quality genome for 
C. ruber enabled us to robustly explore the effects of mul-
tiple evolutionary processes on venom evolution using 
reference-based genomic and transcriptomic analyses.

Population Genomics Reveals Two Genetically Distinct 
Populations with Unique Evolutionary Histories

We identified two genetically distinct populations sepa-
rated by latitude with contact at ∼ 26 ◦N latitude 
near Loreto, BCS, MX (Fig. 2b), consistent with previous re-
sults (Harrington et al. 2018). Genetic differentiation be-
tween the two identified populations was extensive 
(FST = 0.295--0.301), with levels of fixation similar to that 
of highly genetically distinct populations of other North 
American vipers (Gibbs et al. 1997; Margres et al. 2019; 
Schmidt 2019). Reduced gene flow compared to expecta-
tions under a model of IBD was observed at the north-
eastern range edge near the Peninsular Ranges (Fig. 2d), 
which separate the California chaparral from the Sonoran 
Desert. The Sonoran Desert serves as a barrier to migration 
for many terrestrial organisms (Ernest et al. 2003; Brown 
et al. 2009), and for C. ruber (Greenberg 2002), the barrier 
likely exists due to climatic differences and competition 
with congenerics such as its sister taxon, the Western 
Diamondback Rattlesnake (C. atrox; Alencar et al. 2016). 
Reduced gene flow was also observed near the Vizcaíno 
desert (Fig. 2d). Numerous species of the Baja region exhibit 
population differentiation occurring at the Vizcaíno desert 
(Riddle et al. 2000). Three hypotheses suggest that this 

Table 2 Results of the conditional RDA for venom-gland transcriptome 
normalized read count data from HTSeq-count as the response variable

F P-value adj-R2

Full Model 5.521 0.002 0.73
Marginal Model 0.54

SVL 8.32 0.003 0.30
Prey NMDS2 5.17 0.01 0.14
Bioclim PC1 4.49 0.012 0.10

Marginal model was identified using forward model selection on all 
explanatory variables. Results for all variables can be found in supplementary 
table S3, Supplementary Material online.

Table 3 Results of the conditional RDA for venom-gland transcriptome 
normalized read count data from stringtie2 as the response variable.

F P-value adj-R2

Full Model 4.29 0.003 0.66
Marginal Model 0.62

SVL 14.24 0.001 0.44
Bioclim PC1 5.38 0.001 0.12
Nontoxin PCo1 3.42 0.02 0.06

Marginal model was identified using forward model selection on all 
explanatory variables. Results for all variables can be found in supplementary 
table S3, Supplementary Material online.

Table 4 Significant variables of the marginal models identified through 
forward model selection from conditional RDAs using the top six most 
abundantly expressed toxin families

Toxin Family Marginal Model P-value adj-R2

BPP SVL 0.010 0.31
Prey NMDS2 0.008 0.22

CTL SVL 0.004 0.32
Nontoxin PCo1 0.015 0.15

Myotoxin SVL 0.004 0.34
Nontoxin PCo1 0.039 0.13

PLA2 Bioclim PC1 0.001 0.38
SVL 0.001 0.29

SVMP SVL 0.007 0.27
Nontoxin PCo1 0.013 0.18

SVSP SVL 0.012 0.19
Prey MPD 0.047 0.11

Results for all variables in each family can be found in supplementary table S3, 
Supplementary Material online.
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region may serve as a major barrier to migration in multiple 
organisms due to (i) a proposed ancient transpeninsular 
seaway that bisected the peninsula during the late 
Miocene to middle Pleistocene, (ii) isolation due to 
Pleistocene glacial–interglacial cycles, or (iii) differences in 
rainfall patterns between the peninsular regions (reviewed 
in Dolby et al. 2022). The Vizcaíno desert region, however, 
functions only as a minor barrier to migration in C. ruber, at 
least relative to the Peninsular Ranges and subspecies 
boundary at ∼ 26 ◦N latitude (Fig. 2d). The deviation of 
C. ruber population structure from the patterns exhibited 
by other species (Riddle et al. 2000) was not associated 
with any apparent current or ancient topographic or geo-
graphic barriers to dispersal; rather, population structure 
has been proposed to be potentially linked with climatic 
fluctuations that occurred during the Pleistocene, resulting 
in temporary isolation of the two populations ∼450–510 ka 
before present until secondary contact ∼80 ka before pre-
sent (Harrington et al. 2018). Ne in the northern and south-
ern populations appeared to concordantly increase during 
the potential period of climate-driven isolation (∼200– 
450 ka before present). At the time of purported secondary 
contact during the last glacial period (∼80 ka before pre-
sent), Ne decreased in the northern population while re-
maining relatively stable in the southern population 
(Fig. 2e). The observed differences in Ne between the two 
populations during the last glacial period suggests a pivotal 
role of climate-induced pressures on Ne and migration dy-
namics. Climate conditions were likely less favorable for 
snake survival in the northern range during glacial periods 
(Herbert et al. 2001), potentially driving the previously iso-
lated northern population south and leading to decreased 
Ne and renewed contact with the southern population. 
Due to the limitations of PSMC in resolving more recent 
demographic histories, however, inferences of Ne near 
the present may not be inferred accurately (Liu and Fu 
2015; Nadachowska-Brzyska et al. 2016; Patton et al. 
2019). Additional biogeographic analyses and sampling 
would be needed to further explore the distinct evolution-
ary histories of the two populations identified here.

Venom Expression Differentiation Explained More by 
Ontogeny Than Genetic Population

Ontogenetic venom variation was much more pronounced 
than venom differentiation across populations. Indeed, age 
class explained ∼22× more variance in venom proteomic 
composition and ∼4× more variance in venom-gland tran-
scriptome expression than population structure. The onto-
genetic shift in venom expression occurred at ∼65 cm SVL 
(supplementary fig. S3, Supplementary Material online) 
with continued variance throughout the life history of an in-
dividual, similar to other Crotalus species (Schonour et al. 
2020). Differential expression of individual genes revealed 

patterns of increased expression in SVMP and CTL toxin 
families in adults and the northern population and in-
creased expression of myotoxins in juveniles. Myotoxins 
are small, basic peptides that induce physiologic tetanus 
of skeletal muscles, particularly in mice, and likely play an 
important role in subduing prey (Brenes et al. 1987; 
Mackessy et al. 2003; Mackessy 2021). SVMPs are a diverse 
family of large catabolic enzymes capable of causing severe 
damage to common structural proteins, inducing hemor-
rhage, and may aid in prey digestion (Kini and Koh 2016; 
Slagboom et al. 2017; Mackessy 2021). Variable ontogen-
etic and geographic expression of SVMPs and myotoxins is 
observed in multiple Crotalus species (Straight et al. 1991; 
Margres et al. 2015b; Smith et al. 2023), and such variation 
may be due to adaptive evolution. Adaptive differences 
may be produced by changes in prey preference at different 
life-history stages (Mushinsky et al. 1982) or optimal for-
aging strategy that promotes faster growth rates and re-
duces time spent in more vulnerable size classes (Werner 
and Gilliam 1984; Klauber 1997). For example, the produc-
tion of large toxin enzymes such as SVMPs may be more 
metabolically costly (Mackessy 1988), leading to limited ex-
pression in juveniles. Although the precise mechanism re-
mains unknown, the venom phenotype was significantly 
variable across age classes with only a limited number of 
toxins exhibiting differential expression across populations, 
suggesting that changes in venom expression due to ma-
turity may have greater ecological implications (i.e. differ-
ences in prey size and/or species) compared to changes 
across populations.

Venom Variation Across Space Explained Primarily by 
Ontogeny with Significant but Reduced Effects of Other 
Selective Pressures and Neutral Processes

Venom Variation Best Explained by Snake Size

Conditional redundancy analysis integrating snake size, en-
vironmental factors, prey availability, and prey phylogenetic 
distance revealed that snake size (i.e. ontogeny) best pre-
dicted multivariate venom expression variation, regardless 
of which read count estimation method was employed, 
consistent with our venom analyses described above. 
Similar to geographic venom variation, ontogenetic venom 
variation is commonly attributed to selection (Andrade and 
Abe 1999; Gibbs et al. 2011; Webber et al. 2016; Cipriani 
et al. 2017). Snakes, as gape limited predators, may select 
prey at different life-history stages (Shine 1991); therefore, 
the venom phenotype may adaptively shift as size increases 
to more effectively subdue and/or digest different, larger 
prey species (Margres et al. 2015b). Variable efficacy of 
adult and juvenile venom in differing prey items is observed 
in multiple snake species (Mackessy 1988; Andrade and 
Abe 1999; Margres et al. 2016b; Cipriani et al. 2017; 
Borja et al. 2018), suggesting that ontogenetic venom 
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variation is often adaptive; however, the potential for neu-
tral ontogenetic variation in snake venom has yet to be 
explored. Ontogeny may simply reflect developmental con-
straints which prevent the expression of otherwise benefi-
cial traits or genes due to undeveloped key features or 
pathways (Gould and Lewontin 1979; Fernandez-Lorenzo 
et al. 1999; Barton and Boege 2017). Indeed, similar to 
other rattlesnakes (Margres et al. 2015b; Schonour et al. 
2020; Hogan et al. 2024), we found that juvenile C. ruber 
venoms were simpler than adult venoms, with many 
more toxins upregulated in adults relative to juveniles 
(Fig. 3e). Despite the current lack of understanding on 
developmental constraints in snake venom, a better com-
prehension of the regulatory architecture underlying 
ontogenetic venom variation (Hogan et al. 2024) will en-
able future venom studies to incorporate such constraints 
into analyses of venom ontogeny.

Environmental differences also significantly explained 
venom expression variation using both read count estima-
tion methods, consistent with previous work in other ven-
omous snake species (Strickland et al. 2018; Margres 
et al. 2021b; Siqueira-Silva et al. 2021). Overall, variation 
in annual temperature and temporal fluctuations in tem-
perature were the most important environmental factors 
(supplementary table S4, Supplementary Material online; 
PC1). Snakes further north experience cooler overall tem-
peratures and greater annual temperature fluctuations 
compared to snakes in the south which experience consist-
ently warmer temperatures throughout the year. Climactic 
factors such as temperature have been found to influence 
snake feeding behavior and prey preferences (Vincent 
and Mori 2008) which may in turn favor increased or de-
creased expression of certain toxin families that lead to 
more efficient feeding in particular climates. As described 
above, large toxin enzymes may aid in digestion; therefore, 
increased expression of these enzymes may be beneficial 
for snakes attempting to consume prey in cooler climates. 
Large enzymes such as SVMPs were more highly expressed 
in venoms from the northern population (Fig. 3c), suggest-
ing a potential correlation between expression of putatively 
digestion-aiding toxin enzymes and cooler temperatures. 
Alternatively, environmental abiotic factors may have 
more accurately captured changes in prey availability across 
geographic space (see below), suggesting that venom ex-
pression variation corresponded with environmentally in-
duced changes in prey availability. More detailed dietary 
analysis and toxicity measurements of different venoms in 
different prey under varying environmental conditions 
(e.g. assays conducted under different temperatures) 
would be needed to disentangle biotic and abiotic contri-
butions to venom evolution.

Differences in prey availability were identified as signifi-
cant within the marginal model using HTSeq-count derived 
data. Here, the significance of prey was primarily associated 

with an increase in prey availability at the northern range 
edge compared to individuals found throughout the 
Baja California Peninsula (supplementary table S5, 
Supplementary Material online; NMDS2). Venom compos-
ition and variation is frequently associated with differences 
in prey availability among populations (Daltry et al. 1996; 
Barlow et al. 2009; Gibbs and Mackessy 2009; Holding 
et al. 2016; Margres et al. 2017a; Smiley-Walters et al. 
2017; Robinson et al. 2021; Smith et al. 2023), and 
variation in the number of available prey species between 
C. ruber populations appeared to contribute, in part, to ve-
nom evolution. Variables of prey availability and prey mean 
phylogenetic distance (MPD) within our model, however, 
assumed (i) that all C. ruber would consume a given prey 
item if present within its geographic location, and (ii) all 
prey are equally abundant at each location. We acknow-
ledge that these assumptions ignore ontogenetic changes 
in prey preference and/or geographic variation in prey 
abundance (Andrade and Abe 1999; Mackessy et al. 
2006; Dugan and Hayes 2012; Cipriani et al. 2017). 
Additional diet information, including precise characteriza-
tion of changes in prey composition across life-history 
stages and variation in abundance for each prey species 
across space, would be necessary to confirm size/ 
geographic-induced dietary constraints or preferences 
here.

Lastly, nontoxin sequence variation was identified as a 
significant predictor of multivariate venom expression vari-
ation with read count estimation from stringtie2. Although 
it was the weakest predictor of venom expression variation 
(adj-R2 = 0.06) compared to ontogeny, abiotic factors, and 
biotic factors, its presence in the marginal model suggested 
that neutral evolutionary processes minimally explain some 
variation in the overall venom phenotype. Therefore, neu-
tral evolutionary processes may have a diminished yet still 
significant impact on venom evolution. Significance of non-
toxin sequence variation within the model, however, may 
be potentially confounded by strong population structure 
(Fig. 2; Holding et al. 2018); such population structure 
may have been the product of geographically limited dis-
persal and genetic drift, and/or may be due to selective 
pressures causing reduced immigrant fitness (Garant et al. 
2007). Still, results of the marginal model suggested that 
neutral sequence variation, our proxy for neutral evolution-
ary processes, significantly explained some variation in the 
overall venom phenotype.

Although both read-count methods identified SVL as the 
most significant predictor of venom expression variation, 
the other significant predictors and their contributions to 
the model varied between the two methods. Specifically, 
nontoxin sequence variation was only a significant predict-
or for all toxins when using StringTie2 estimates; however, 
it was also a significant predictor across three specific 
toxin families (CTL, SVMP, and myotoxin) when using 
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HTSeq-counts (Table 4). The significance of nontoxin se-
quence variation across both read-count methods provided 
confidence that the result was robust to any potential 
biases across methods. Why such differences occurred is 
not immediately clear, but varying sensitivities of the methods 
to different aspects of the data or inherent differences in how 
these methods process read counts were suspected (See 
Materials and Methods). Further evaluation of each method, 
potentially including additional datasets and validation of 
findings through complementary approaches, would be ne-
cessary to better understand these discrepancies.

Life History and Differing Secondary Factors 
Independently Contribute to Individual Toxin Family 
Evolution

Individual components of a complex trait like venom, such 
as specific toxin gene families, may evolve independently 
(Casewell et al. 2011, 2020; Schield et al. 2022); certain 
toxin families may play a more important role in specific as-
pects of feeding such as subduing, tracking, or digesting 
prey (Mackessy 2021), leading to unique evolutionary tra-
jectories from different evolutionary mechanisms. For ex-
ample, prey resistance to certain toxins or toxin families 
(Holding et al. 2016; Margres et al. 2017a; Gibbs et al. 
2020; Robinson et al. 2021) may lead to variable expression 
of those toxins, whereas other toxins may evolve in re-
sponse to abiotic conditions such as temperature (Tsai 
et al. 2003; Strickland et al. 2018; Margres et al. 2021b).

We tested whether variation across individual toxin fam-
ilies was best explained by distinct factors compared to 
multivariate venom expression variation. SVL was identified 
in the marginal models of all toxin families individually, fur-
ther demonstrating the significance of ontogenetically in-
duced venom variation in C. ruber. Variation in three of 
the toxin families (SVMP, CTL, myotoxin) was also signifi-
cantly correlated with nontoxin sequence variation in add-
ition to SVL (Table 4), suggesting that neutral evolutionary 
processes may contribute to variation across highly ex-
pressed toxin families of the venom phenotype. The rela-
tionship, however, may have been confounded by strong 
population structure (see above). Variation in the PLA2 fam-
ily was more significantly associated with environmental 
factors, particularly temperature, than SVL. Correlation be-
tween PLA2 expression and environmental factors, espe-
cially those related to temperature, has been found in 
other Viperidae species (Tsai et al. 2003; Strickland et al. 
2018; Margres et al. 2021b) and may be associated with 
temperature-driven variation in snake feeding behavior, 
prey availability, and/or prey preference (Vincent and Mori 
2008). Consistent correlation observed across multiple spe-
cies strongly implies a link between PLA2 expression and en-
vironmental factors. Prey availability and prey phylogenetic 
distance was identified as a significant predictor of 

expression variation across the BPP and SVSP toxin families, 
suggesting that the evolution of these families may be 
strongly linked with prey-induced selective pressures.

The inclusion of snake size in the marginal models for all 
of the most abundantly expressed toxin families was con-
cordant with patterns of venom expression variation, high-
lighting the importance of life history in shaping venom 
evolution in C. ruber. However, variation of secondary fac-
tors identified in the marginal models across multiple toxin 
families, such as BPPs, SVSPs, and PLA2s, prompts further 
investigation into (i) why certain toxin families exhibit dis-
tinct putative selection pressures, and (ii) whether these 
toxin families exhibit similar patterns across multiple 
species.

Conclusion
We sequenced and assembled the genome of C. ruber, 
characterized range-wide genetic and venom differenti-
ation, and robustly explored the underlying factors asso-
ciated with venom expression evolution, including neutral 
evolutionary processes. Venom variation was most signifi-
cantly and overwhelmingly predicted by snake size; vari-
ation across life history may be the result of selection due 
to differences in prey and/or optimal foraging strategies 
(Adriaens et al. 2001; Hintz and Lonzarich 2018) or 
neutral mechanisms such as developmental constraints 
(Fernandez-Lorenzo et al. 1999; Barton and Boege 2017). 
Additional information on changes in diet preference 
across life history, functional data of venom toxicity in these 
prey, and characterization of the regulatory architecture 
underlying venom expression differentiation across age 
classes (e.g. Hogan et al. 2024) is needed to further explore 
the ultimate and proximate mechanisms driving ontogenet-
ic venom variation in C. ruber. Although we also found that 
venom variation was significantly associated with abiotic 
and biotic factors, neutral patterns explained some vari-
ation in the venom phenotype and minimally warrant con-
sideration and inclusion in future models.

By incorporating proxies for neutral and adaptive pro-
cesses into a singular statistical framework, our study ro-
bustly shows the pivotal role of adaptive evolution in 
snake venoms, consistent with decades of research 
(Daltry et al. 1996; Sasa 1999; Mackessy et al. 2003; Sanz 
et al. 2006; Barlow et al. 2009; Vonk et al. 2013; Holding 
et al. 2016, 2018, 2021; Cipriani et al. 2017; Margres 
et al. 2017a; Smiley-Walters et al. 2017; Strickland et al. 
2018; Davies and Arbuckle 2019; Arbuckle 2020; 
Casewell et al. 2020; Schonour et al. 2020; Margres et al. 
2021b; Siqueira-Silva et al. 2021; Mason et al. 2022; Rao 
et al. 2022; Schield et al. 2022; Smith et al. 2023). 
However, several of these previous studies did not ad-
equately account for neutral processes, providing reduced 
confidence in adaptive interpretations. We acknowledge 
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that our findings are based on the analysis of a single spe-
cies and trait, and neutral processes may play a larger role in 
shaping phenotypic variation in other species and biological 
traits crucial to fitness and survival (Wright 1931; Nei 2005; 
Ho et al. 2017). Consequently, accounting for the influence 
of neutral evolutionary processes remains critical when in-
vestigating the forces producing trait variation, particularly 
within species. Our findings, together with those of others 
(e.g. Aird et al. 2017; Hague et al. 2020), underscore the 
necessity of considering the complexity of evolutionary pro-
cesses when investigating phenotypic evolution.

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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